Simulations of kinetic events at the atomic scale

Graeme Henkelman UT Austin

How can we simulate the dynamics of molecular systems over experimental time scales?

Objective:

To calculate dynamics of a surface over time scales which are much longer than can be calculated with direct classical dynamics.

Most interesting transitions are rare events (much slower than vibrations)

Simulating a transition for a typical rare event with classical dynamics can require ~10¹² force evaluations

Transition state theory

A statistical theory for calculating the rate of slow thermal processes

The primary task is to find an N-1 dimensional dividing surface that represents a bottle neck for the transition

Harmonic transition state theory

Need to find saddle points on the energy surface

Rate of escape through each saddle point region:

$$Rate = \frac{\prod_{i=1..N}^{\mathbf{v}_i}}{\prod_{j=1..N-1}^{\mathbf{v}_{\dagger}}} \cdot e^{-\frac{\Delta E}{k_B T}}$$

- Minima
- Saddle Point

Methods for determining reaction rates

Finding Saddle points

Single Ended:

Double Ended:

The Nudged Elastic Band Method

Recent developments:

- Improved tangent
- Climbing image
- Double nudging (Wales)

- Second order optimizers
 - conjugate gradients
 - quasi-newton (bfgs)
- ■nternal coordinates
- ■Rigid constraints (string method)

Force on each image:

potential p $\vec{F}_i^{nudged} \ = \ -\vec{\nabla}V(\vec{R}_i)|_{\perp} + \vec{F}_i^s \cdot \hat{\tau}_{\parallel} \ \hat{\tau}_{\parallel} \\ \text{Initial} \qquad \qquad \vec{F}_i^{s} \equiv k_{i+1} \left(\vec{R}_{i+1} - \vec{R}_i\right) - k_i \left(\vec{R}_i - \vec{R}_{i-1}\right)$ **Springs**

Minimum mode following methods

Dynamics: know the initial state, but don't know the final state!

- Find the lowest curvature mode
 - Dimer method (Voter, Henkelman, Jónsson)
 - Lanczos (Barkema, Mousseau)
 - Langrange multipliers (Wales)
- Follow the minimum mode up the potential, minimize in all other modes
- Many independent searches can be used to find unknown reaction mechanisms

Adaptive kinetic Monte Carlo

Combine saddle point searches with kinetic Monte Carlo (KMC):

- Find low energy saddle points using a min-mode method.
- Choose one processes from a Boltzman distribution.
- 3. Hop to the final state of the chosen process.
- 4. Increment time by an average amount Δt.
- 5. Repeat.

Probability: $p_i \propto r_i$

Rate: $r_i = v e^{-\Delta E_i/k_B T}$

Time: $\overline{\Delta t} = \frac{1}{\sum r_i}$

Standard KMC

AI / AI(100) ripening

n = 1

t = 0 ns

n = 10

t = 6 ns

Complex events do happen

- A compact island forms in 1 ms at 300K
- Find many events which are not included in standard KMC event tables

Al / Al(100) growth

Multi-atom events can be important for dynamics

- Exchange events involving more than one atom lead to smooth growth on Al at 77K
- Single atom ripening events contribute to rough growth on Cu

Dynamics from Density Functional Theory

When there is no accurate empirical potential ...

- Saddle points can be found directly with DFT.
- Min-mode following methods are in VASP, SIESTA, SOCORRO, and CASTEP
- Only a few tens of saddle point searches are possible in each new state
- Can be used to find unexpected reaction pathways and dynamics

From DFT to kinetic Monte Carlo: Pd / MgO

If all important mechanisms are found, KMC can reach longer time scales

- DFT calculations of Pd diffusion on MgO show that small clusters are more mobile than the Pd monomer
- DFT diffusion rates are used in a KMC simulation to compare with experiment

Application to Hydrogen Storage Materials

Challenges for simulating the kinetics of hydrogen storage materials

- a. Need to develop potentials for modeling H₂ dissociative adsorption at catalysts, or use DFT
- b. Since H diffusion barriers will change with environment, it is unlikely that any few reaction mechanisms can be used with standard KMC to model the storage kinetics of a material
- c. A phase change in a material will limit the use of traditional kinetic Monte Carlo

Provides an exciting opportunity for new methods!

Quantum effects for hydrogen kinetics

Zero point and tunneling corrections

 Estimate using classical normal modes above T_c

$$T_c = \frac{\hbar \left| \nu^* \right|}{k_B}$$

Wigner correction:

$$\delta E_{
m wig} = -k_B T \ln \left[rac{\Pi_i \; {
m sinh}(x_i^{
m init})/x_i^{
m init}}{\Pi_i \; {
m sinh}(x_i^{\ddag})/x_i^{\ddag}} \;
ight]$$

where $x_i = h\nu_i/2k_BT$

 Below T_c, find instanton using Minmode following methods (Jónsson)

Instanton: Saddle point for Feynman chain to cross the barrier

Adaptive kinetic Monte Carlo

Strengths and weaknesses

- Saddle point searches are independent, and can be computed in a parallel (distributed) environment
- Need to find all important (low energy) reaction mechanisms
 - contrast with accelerated dynamics methods (Voter)
- Accuracy determined by sampling:
 - Fewer searches for expensive (DFT) calculations
 - Extensive sampling when using empirical potentials
- No simple relation between sampling and accuracy
- If the important processes are known, they can be used in a KMC simulation to reach longer time and length scales
- Can include quantum effects as necessary

Funding

UT - Austin

Robert A. Welch Foundation

Advanced Research Program (State of Texas)

_

Collaborators

UT: Lijun Xu

Nathan Froemming

Wenjie Tang Dan Sheppard

Other

groups: Hannes Jónsson (Iceland)

Arthur Voter (LANL)
Blas Uberuaga (LANL)

Charles Campbell (UW)

Freely available software tools

http://eon.cm.utexas.edu/

http://theory.cm.utexas.edu/fida/

http://theory.cm.utexas.edu/vtsttools/

http://theory.cm.utexas.edu/bader/

The EON distributed computing project

FIDA Distributed computing framework upon which eon is built

Dimer, NEB, and dynamical matrix methods implemented in the VASP code

Bader charge density analysis